Monterey Regional Water Pollution Control Agency

SPILL PREVENTION, CONTROL, AND COUNTERMEASURE PLAN

Fort Ord Pump Station

February 2012
REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision #</th>
<th>Date</th>
<th>Summary of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.01</td>
<td>June 30, 2004</td>
<td>SPCC first issue.</td>
</tr>
<tr>
<td>V.02</td>
<td>February 5, 2010</td>
<td>SPCC Revisions</td>
</tr>
<tr>
<td>V.03</td>
<td>February 15, 2012</td>
<td>SPCC Revisions per MoCo Env. Health Recommendations</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CERTIFICATION AND MANAGEMENT APPROVAL .. iv

1. **SPCC PLAN SUMMARY** ... 1-1
 1.1 APPLICABLE REGULATIONS .. 1-1
 1.2 SCOPE AND OBJECTIVES ... 1-1
 1.3 SPCC PLAN LOCATION ... 1-2
 1.4 REVISIONS AND UPDATES .. 1-2

2. **FACILITY INFORMATION** .. 2-1
 2.1 GENERAL INFORMATION .. 2-1
 2.2 HAZARDOUS MATERIALS AND OIL ... 2-1
 2.3 DIESEL TANK AND GENERATOR .. 2-2
 2.4 TOPOGRAPHY, SOILS AND DRAINAGE ... 2-2
 2.4 ASSESSMENT OF SPILL RISK .. 2-3

3. **SPILL PREVENTION** ... 3-1
 3.1 EQUIPMENT DESIGN ... 3-1
 3.2 INSPECTION AND MONITORING .. 3-4
 3.3 PREVENTIVE MAINTENANCE ... 3-4
 3.4 STANDARD OPERATING PROCEDURES ... 3-4
 3.5 RECORD KEEPING ... 3-5

4. **SPILL CONTROL** ... 4-1
 4.1 CONTAINMENT .. 4-1
 4.2 DRAINAGE CONTROL ... 4-1
 4.3 SECURITY .. 4-1

5. **SPILL COUNTERMEASURE (RESPONSE) PROCEDURES** .. 5-1
 5.1 SPILL DISCOVERY ... 5-1
 5.1.1 LEAK FROM STORAGE TANK ... 5-1
 5.1.2 SPILL WHEN GENERATOR IS BEING OPERATED .. 5-1
 5.1.3 SPILL DURING TANK FILLING OR LEAK FROM DELIVERY TRUCK .. 5-2
 5.2 PPE AND SPILL RESPONSE EQUIPMENT .. 5-2
 5.3 SPILL MITIGATION, CLEANUP AND DISPOSAL ... 5-3
 5.3.1 SPILL WHEN GENERATORS ARE BEING OPERATED .. 5-3
 5.3.2 SPILL DURING TANK FILLING OR LEAK FROM DELIVERY TRUCK .. 5-3
 5.3.3 LEAK IN THE TANKER TRUCK ... 5-4
 5.4 ADDITIONAL ASSISTANCE ... 5-4

6. **SPILL REPORTING** ... 6-1
 6.1 REPORTING PARAMETERS ... 6-1
 6.2 DOCUMENTATION OF SPILL REPORT .. 6-1
TABLE OF CONTENTS (CONTINUED)

7. TRAINING ... 7-1

TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESULTS OF SCREENING RISK ASSESSMENT</td>
<td>2-4</td>
</tr>
<tr>
<td>2</td>
<td>EXAMPLES OF TANK SENTINEL TS-1000 FORM PRINTOUT</td>
<td>3-3</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FACILITY MAPS AND DRAWINGS</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>SPECIFICATIONS FOR “SUPERVAULT” DIESEL TANK</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>EMERGENCY RESPONSE ASSISTANCE CONTACT LISTS</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>SPILL REPORT FORM</td>
<td>D-1</td>
</tr>
</tbody>
</table>
Facility: FORT ORD PUMP STATION
Seaside Court and Marina Drive
Marina, CA 93933

Owner: Monterey Regional Water Pollution Control Agency
Harris Court, Bldg D
Monterey, CA 93940

MANAGEMENT APPROVAL
This SPCC Plan for the Fort Ord Pump Station has been reviewed and approved for implementation by the Monterey Regional Water Pollution Control Agency.

__
Mark Malanka
Maintenance Manager

Bret Boatman
Maintenance Supervisor

__
Date

__
James Coleman
Safety Officer

__
Date
1. SPILL PREVENTION CONTROLS AND COUNTERMEASURES (SPCC) PLAN SUMMARY

1.1 APPLICABLE REGULATIONS

Spill Prevention Controls and Countermeasures (SPCC) regulations are included in the Code of Federal Regulations (Part 40, Subpart 112). For onshore facilities, these regulations are administered by the USEPA. These regulations are applicable to any facility with an aggregate aboveground oil storage capacity of 1,320 gallons or more. EPA retains jurisdiction over the SPCC regulations, as they are not delegated to the states.

The California Health and Safety Code, Section 25270-25270.13 (known as the Aboveground Petroleum Storage Act) includes spill prevention control requirements similar to the federal SPCC regulations. Any tank facility subject to the federal SPCC regulations is also subject to the California requirements. The Agency responsible for administering these code requirements is the State Water Resources Control Board. If there is a Certified Unified Program Agency (CUPA) in a jurisdiction, then the CUPA shall enforce the SPCC plan requirements.

These regulations include an exemption for wastewater treatment (40 CFR 112.1(d)(6)), but the regulation preamble states that the exemption does not apply to the use of diesel for standby generators.

1.2 SCOPE AND OBJECTIVES

The Monterey Regional Water Pollution Control Agency (MRWPCA) Fort Ord Pump Station Spill Prevention, Control, and Countermeasures (SPCC) Plan has been prepared to eliminate or minimize the potential environmental risk of oil/contaminate spills, resulting from the use of diesel generators and diesel storage at the Fort Ord Pump Station. The SPCC Plan addresses the following elements:

- **Prevention** - Operational best management practices (BMPs) including operating procedures, maintenance, training, inspection, record keeping, housekeeping, and waste management.
- **Control** - Source control constructed to control the release of spills to the environment, such as secondary containment structures.
- **Countermeasures** - Emergency spill response procedures, including spill reporting, response, and cleanup procedures to be implemented by spill response personnel.

This SPCC Plan is intended to identify the spill risks present at the Fort Ord Pump Station and define the facilities and procedures used to prevent, control, and respond to spills. The SPCC Plan is to be certified by a Professional Engineer and approved for implementation by MRWPCA management.
1.3 SPCC PLAN LOCATION

A copy of this plan is maintained onsite at the Fort Ord Pump Station. A second copy is kept for reference at the MRWPCA Regional Treatment Plant.

1.4 REVISIONS AND UPDATES

Any revisions to the Fort Ord Pump Station SPCC Plan, in response to operational/facility modifications, and/or in response to changes in regulatory requirements, are documented. A summary of revisions is included inside the front cover of the SPCC Plan.
2. FACILITY INFORMATION

2.1 GENERAL INFORMATION

The MRWPCA-Fort Ord Pump Station is a wastewater treatment and sewage pump station located along State Highway 1 in Marina, California, operated by the Monterey Regional Water Pollution Control Agency. An access road to the facility leads from State Highway 1 between the end of Marina Drive and Del Monte Road. The Southern Pacific Railroad tracks pass near the southeastern end of the facility site. There is another access to the site via Fort Ord on the southern end. There are no underground storage tanks (USTs) at the facility. There is no hazardous waste generated, consolidated nor treated at the site. Facility information is summarized in the following table.

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>Fort Ord Pump Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Operator:</td>
<td>Monterey Regional Water Pollution Control Agency</td>
</tr>
<tr>
<td>Facility Location:</td>
<td>At the south end of Marina Drive, near the intersection of Seaside Court and Marina Drive in Marina, California.</td>
</tr>
<tr>
<td>Physical Address:</td>
<td>Seaside Court and Marina Drive Marina, California</td>
</tr>
<tr>
<td>Mailing Address:</td>
<td>Monterey Regional Water Pollution Control Agency 5 Harris Court, Building D Monterey, CA 93940</td>
</tr>
<tr>
<td>County:</td>
<td>Monterey</td>
</tr>
<tr>
<td>Latitude/Longitude:</td>
<td>Latitude: 36°40.843' North / Longitude: 121°48.738' West</td>
</tr>
<tr>
<td>Site Area:</td>
<td>45,829 square feet</td>
</tr>
</tbody>
</table>

The Monterey Regional Water Pollution Control Agency (MRWPCA) operates a regional wastewater treatment plant (Regional Treatment Plant) located two miles north of the City of Marina in Monterey County. It also operates and maintains 25 pump stations connected to the Regional Treatment Plant, including the Fort Ord Pump Station. Appendix A includes a site location map and a facility plot plan.

The site is normally unmanned, but a Field Maintenance Worker usually visits the site at least three times each week.

2.2 HAZARDOUS MATERIALS AND OIL

The hazardous materials in use at the Fort Ord Pump Station site are:

- **Diesel Oil** - One 6,000 gallon aboveground tank containing liquid, pure Diesel Fuel #2.
• Virgin Carbon - Two aboveground tanks with odor scrubber each containing 5,000 lbs of pure, solid activated carbon (common name: Virgin Carbon), totaling 10,000 lbs onsite.

There have been no spills of oil nor hazardous materials at this site.

2.3 DIESEL TANK AND GENERATOR

The SPCC Plan applies to the diesel oil storage tank and its associated piping systems. The diesel is used as a fuel for the backup generators, which are used to power the sewage pumps in the event of a power outage. The process consists of a storage tank, two transfer pumps and associated piping and fittings. The diesel oil is stored at ambient temperature and pressure.

The diesel oil tank is centrally located within the site. The location of the tank is shown in the facility plot plan included in Appendix A. Photographs of the tank are also included in Appendix A.

2.4 TOPOGRAPHY, SOILS AND DRAINAGE

The total area of the facility is approximately 45,829 square feet. The property has a gradual grade sloping towards the southwest.

A soils report was prepared from borings conducted at the site in 1978. A summary of the topography and soil conditions is provided below.

<table>
<thead>
<tr>
<th>Surface Soil:</th>
<th>Silty sand to 4 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Soil:</td>
<td>Sand from 4 ft to 40+ ft.</td>
</tr>
<tr>
<td>Soil Permeability:</td>
<td>Very permeable</td>
</tr>
<tr>
<td>Water Table Depth:</td>
<td>35 feet (est.)</td>
</tr>
<tr>
<td>Elevation of Site:</td>
<td>44 feet MSL</td>
</tr>
<tr>
<td>Surface Topography:</td>
<td>Dunes</td>
</tr>
</tbody>
</table>
Proximity to surface water and hydrological information are provided below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual precipitation:</td>
<td>14 inches</td>
</tr>
<tr>
<td>Is the facility located in a 100-year flood plain?</td>
<td>No</td>
</tr>
<tr>
<td>Proximity to surface waters:</td>
<td>Approx 1,200 feet to ocean</td>
</tr>
<tr>
<td>Drainage direction and downstream features:</td>
<td>Grade to northwest</td>
</tr>
</tbody>
</table>

2.5 ASSESSMENT OF SPILL RISK

A screening risk assessment was conducted to review the potential magnitude and probability of a diesel spill. The results are summarized in Table 1.
TABLE 1 RESULTS OF SCREENING RISK ASSESSMENT

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Probability</th>
<th>Cleanup</th>
<th>Risk</th>
<th>Safeguards/Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leak from primary tank</td>
<td>Low</td>
<td>Minor</td>
<td>Low</td>
<td>Tank Design, Monitoring Equipment</td>
</tr>
<tr>
<td>Leak from primary tank that reaches the environment</td>
<td>Very Low</td>
<td>Minor</td>
<td>Very Low</td>
<td>Tank Design, Containment, Monitoring Equipment</td>
</tr>
<tr>
<td>Failure of primary tank</td>
<td>Low</td>
<td>None</td>
<td>Very Low</td>
<td>Tank Design, Monitoring Equipment</td>
</tr>
<tr>
<td>Failure of both primary and secondary containment tanks</td>
<td>Very Low</td>
<td>Major</td>
<td>Low</td>
<td>Tank Design, Containment, Monitoring Equipment</td>
</tr>
<tr>
<td>Valve stem packing leak</td>
<td>Low</td>
<td>Minor</td>
<td>Low</td>
<td>Very few valves, Inspections</td>
</tr>
<tr>
<td>Gasket leak</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Very few gaskets, Inspections</td>
</tr>
<tr>
<td>Pipe leak</td>
<td>Medium</td>
<td>Minor</td>
<td>Low</td>
<td>Double-walled, Inspections</td>
</tr>
<tr>
<td>Pipe rupture</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Design, Double-walled</td>
</tr>
<tr>
<td>Pump seal</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Spill during maintenance or sampling</td>
<td>Medium</td>
<td>Minor</td>
<td>Low</td>
<td>Attended Operation</td>
</tr>
<tr>
<td>Collision</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Low Traffic, Bollards</td>
</tr>
<tr>
<td>Small spill during filling</td>
<td>High</td>
<td>Minor</td>
<td>Medium</td>
<td>Attended Operation</td>
</tr>
<tr>
<td>Large spill during filling</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>Attended Operation</td>
</tr>
<tr>
<td>Leak from delivery truck</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Uncontained, Attended</td>
</tr>
</tbody>
</table>

Note. The ratings provided in this table are subjective assessments for the MRWPCA diesel tank. They are not based on quantitative estimates.
3. SPILL PREVENTION

3.1 EQUIPMENT DESIGN

The diesel tank is a “Supervault” double-walled tank with integral secondary containment. The space between the tanks is filled with concrete (for insulation), and it is equipped with a sensor in the space near the bottom to indicate if there is ever liquid that leaks into the space. The tank is placarded for diesel (DOT 1202). Tank specifications are included in Appendix B.

The diesel tank is installed on a concrete pad with a bermed area beneath the tank. The bermed area has a capacity of 363 gallons, as measured. Beyond the concrete pad the ground is covered with gravel.

There are two double-walled supply lines that feed diesel from the tank to two Mitsubishi generators, each rated at 1,200 kW. There is a return line from each generator back to the diesel tank.

For tank filling there is a fixed spill tray around the tank fill valve that will retain any spills at the valve. This tray has a capacity of 15 gallons.

3.2 INSPECTION AND MONITORING

The diesel tank is equipped with an Incon TS-1000 tank sentinel monitoring system. This system was installed in 1998 and records the tank level every day and records the level on a paper trace. Once every week, the sentinel conducts a leak test, based on the change in level over time, and also prints this on the paper trace.

A MRWPCA Field Maintenance Worker visits the site at least three times each week (Monday, Wednesday and Friday). An inspection log is used to record operating data for the site, including the hours that each generator are run, if any. Visual inspections are also made of the tank and piping, and the Incon Tank Sentinel chart is reviewed to check for any leaks.

3.3 PREVENTIVE MAINTENANCE

The diesel tank and pipes are painted about once every five years, when rust begins to show on the tank exterior.

3.4 STANDARD OPERATING PROCEDURES

There are two main procedures for operating the generators and diesel supply system. The first is for running the generators, and the second is for filling the diesel tank. The generator is run at least once a month for testing and whenever there is a power outage.

Based on operating history, the average usage each year is less than 3,000 gallons. Standard operating procedure has been to fill the tank once per year. The diesel vendor has a procedure
for connecting the truck to the tank, and filling the diesel tank. An inflatable polyethylene bath is always placed under the fill valve prior to pumping diesel. During any filling operation, there is always at least one representative from MRWPCA in attendance.

The generator is run at least once a month for testing and whenever there is a power outage.

3.5 RECORD KEEPING

A sample of the Tank Sentinel TS-1000 printout is included in Table 2 on the following page. This example shows the normal daily printout and the weekly leak test report. These records are retained by MRWPCA at the Pump Station for at least three years. Entries are made in the facility inspection forms every time the facilities are inspected (three times each week). Annually the Tank Monitoring Equipment is certified to be in good working condition.
TABLE 2 EXAMPLES OF TANK SENTINEL TS-1000 FORM PRINTOUT

(a) Daily Printout

(b) Weekly Leak Test
4. SPILL CONTROL

4.1 CONTAINMENT

The “Supervault MH” diesel storage tank is a multi-hazard rated insulated and protected tank designed for aboveground fuel storage. The tank provides safe storage of fuel with a high insulation value using a lightweight concrete design. This design provides excellent fire protection and puncture resistance.

The 6,000-gallon tank used at the Fort Ord Pump Station is a cylindrical design with an outer steel tank that provides secondary containment. The tank is installed on a concrete pad with a raised metal berm that has a capacity of 363 gallons, as measured. The secondary (outer) tank has a capacity greater than 110% of the primary tank.

The fill tray installed below the fill valve has a capacity of 15 gallons.

Pictures of the tank and the containment features are included in Appendix A. Specifications for the Supervault MH are included in Appendix B.

All product piping from the storage tank to the generators is secondarily contained either within the tank containment structure, the Pump Station itself, or secondary containment piping.

4.2 DRAINAGE CONTROL

Any diesel spilled on the road at the time of a delivery would drain into the surrounding sand.

4.3 SECURITY

There is a chain link fence with barbed wire at the top around the perimeter of the facility. Gates are locked at all times when the facility is unmanned. All personnel enter through the gate on the east side of the property.

There is adequate lighting at the facility for work at night.
5. SPILL COUNTERMEASURE (RESPONSE) PROCEDURES

In the event of any spill or release of a hazardous material (reportable), the first person to arrive is to call the Field Maintenance Supervisor and the RTP Control Room Operator immediately. The first person to arrive shall also assume the roles and duties of the First Responder and the On-Scene Commander and begin isolating and denying access to the immediate area.

The On-Scene Commander shall be responsible for ensuring that the initial notifications have been made and that the area has been isolated and access denied to the public. Once notified about a hazardous materials release, the Control Room Operator will immediately report the release or spill to the Emergency Response Agency by calling 911 and reporting the incident. The Control Room Operator shall also be responsible for ensuring that the Office of Emergency Services and the Monterey County Environmental Health Department are called. The information to be given is described in Appendix C.

The following spill response procedures included in this section have been developed using a “scenario-base” planning approach. As discussed in the Risk Assessment (Section 3.4), MRWPCA has identified the following four scenarios that are used for planning purposes:

- Scenario 1 – Leak From Storage Tank
- Scenario 2 – Spill When Generators are Being Operated
- Scenario 3 – Spill During Tank Filling or Leak From Delivery Truck

Section 5.1 discusses spill discovery for these three scenarios, and Section 5.2 discusses Personal Protective Equipment (PPE) and other safety and spill response equipment needed for mitigation. Section 5.3 includes procedures (in checklist format) for spill mitigation, cleanup and disposal.

5.1 SPILL DISCOVERY

5.1.1 Leak From Storage Tank

During normal operations when the site is unmanned, a leak could occur from the primary diesel storage tank. In this case, the leak would be discovered during the routine site visits made three times weekly. (Note that in this case, the leak would likely be contained by the secondary tank, so there would be no discharge to the environment.) All potential tank leaks are monitored continuously by the TS-1000 Tank Monitoring System.

5.1.2 Spill When Generator is Being Operated

The only occasions when fuel is transferred to the generators are either when the generators are being tested or when there is a power outage. In the first case (testing the generators), a Field Maintenance Worker will be onsite to activate and observe the test. Part of the procedure for this test is to visually observe the generators and supply system to ensure there are no diesel leaks. If a leak is observed, then it is very likely to be discovered during the test itself.
If there is a power outage, the SCADA system will alert the RTP Control Room Operator, and a Field Maintenance Worker will be dispatched to the site. MRWPCA has a 24-hour coverage and call-out systems, so it is reasonable to assume that an operator or mechanic will be onsite within 30 to 60 minutes. From this point on, any diesel spill would likely be discovered as the responding person observes the generators and supply system.

5.1.3 Spill During Tank Filling or Leak from Delivery Truck

Whenever the diesel tank is being filled, the truck driver and a MRWPCA Field Maintenance Worker will be present at the site. Both would be in close attendance while the tank is being filled. As such, discovery of any diesel spill would be immediate.

5.2 PERSONAL PROTECTIVE EQUIPMENT AND SPILL RESPONSE EQUIPMENT

For any spill that does occur, Level B Personal Protective Equipment (PPE) is needed before starting mitigation. This includes:

- Full-face shield
- Air-purifying cartridge respirator
- Chemical goggles
- Rubber gloves
- Chemically resistant clothing
- Water source

Other safety information and equipment needed are as follows:

- Copy of Material Safety Data Sheet (MSDS)
- Emergency shower and eye wash
- Non-Flammable absorbent: Dry sand (located at plant)
- Hand shovel

There is a spill response kit that is kept at the site near the generators.

The inventory of the spill kit is as follows:

- 18 each 10 ft Blue Socks
- 55 each 48" Blue Socks
- 150 each Universal Mat Pads
- 17 each Pillows
- 168 each Wipers
• 30 each Temporary Disposal Bags and Ties
• 1 each Emergency Response Guidebook
• 1 each Instruction Manual
• 6 each Tamperproof Labels

There are also two spill response kits that are kept at the Regional Treatment Plant. These would be transported to the Fort Ord Pump Station if needed. Each kit provides sufficient materials to absorb 146 gallons of oil.

The inventory of the spill kit is as follows:

• 18 each 10 ft Blue Socks
• 55 each 48” Blue Socks
• 150 each Universal Mat Pads
• 17 each Pillows
• 168 each Wipers
• 30 each Temporary Disposal Bags and Ties
• 1 each Emergency Response Guidebook
• 1 each Instruction Manual
• 6 each Tamperproof Labels

5.3 SPILL MITIGATION, CLEANUP AND DISPOSAL

For any spill that requires mitigation and cleanup and is deemed safe to respond to by the On-Scene Commander, Level B PPE must be worn (as listed above) as a baseline and may be upgraded or downgraded per the hazard assessment (29 CFR 1910.120).

The following procedures should then be followed to mitigate and cleanup the spill.

5.3.1 Spill When Generators are Being Operated

If a spill or release occurs while the generators are being operated, the following procedures are to be followed:

1. As soon as a spill is discovered, shut off the generator(s) and diesel supply line that is leaking
2. Notify the RTP Control Room Operator of the spill and request aid, if necessary.
3. Use the shovel to contain any spilled diesel by building sand dikes with the sand from the surrounding area.
4. Cover the storm drains with temporary covers to prevent the spilled diesel from entering the drain. If the diesel does enter the drain, verify that the plug is in place and there is adequate capacity to hold the spilled diesel.

5. Once the spill is contained, gather all contaminated material and dispose of it in a DOT-approved waste container for disposal or spread in a thin layer over a plastic liner to allow the diesel to air evaporate.

6. Reuse of the contaminated material may only be allowed if acceptable diesel concentrations can be attained.

5.3.2 Spill During Tank Filling or Leak from Delivery Truck

If a spill or release occurs while the tanker truck is unloading, the following procedures are to be followed:

1. The truck driver will immediately shut off the drain valve on the truck/trailer.
2. Try to contain the spilled diesel within the containment area underneath the storage tank or within the inflatable polyethylene bath.
3. Block off the access road using traffic cones, the lift station truck, and/or chemical delivery signs.
4. Notify the RTP Control Room Operator of the spill and request aid, if necessary.
5. Use the shovel to contain any spilled diesel by building sand dikes with the sand from the surrounding area.
6. Cover the storm drains with temporary covers to prevent the spilled diesel from entering the drain. If the diesel does enter the drain, verify that the plug is in place and there is adequate capacity to hold the spilled diesel.
7. Once the spill is contained, gather all contaminated material and dispose of it in a DOT-approved waste container for disposal or spread in a thin layer over a plastic liner to allow the diesel to air evaporate.
8. Reuse of the contaminated material may only be allowed if acceptable diesel concentrations can be attained.

5.3.3 Leak in the Tanker Truck

If a spill or release occurs in the tanker truck, the following procedures are to be followed:

1. Try to contain the spilled diesel within the containment area underneath the tank of within the inflatable polyethylene bath.
2. Block off the access road and deny access to the area using cones, signs and the lift station truck. Isolate the spill area.
3. As soon as a spill is discovered, call the spill in to the RTP Control Room. The caller will request aid, if necessary, from the Regional Treatment Plant.
4. Build sand dikes using the surrounding sand to contain the spill.
5. The clean-up of any contaminated areas as a result of a tanker leak will be the responsibility of, and coordinated by, the delivery contractor. The contractor will be required to follow the procedures outlined in Items 7) and 8), above.

For any spill, estimate the quantity spilled. If the quantity is greater than 42 gallons, review the notification and reporting requirements in Section 6 - Spill Reporting of this plan.

5.4 ADDITIONAL ASSISTANCE

The employee who is first to arrive at the spill or release will initiate the Incident Command system to the extent their training will allow. It will be their function to direct the isolation and containment procedures until relieved by another On-Scene Commander.

All members of the Maintenance and Operations Departments, being directed by the On-Scene Commander, will stand by to offer technical advice and assistance to emergency response personnel, if needed.

Additional help may be obtained by calling Federal, State and Local emergency response agencies, or by calling contractors to provide essential supplies. Contact information is included in Appendix C. If emergency response assistance is required, the Field Maintenance Supervisor /Standby Person will call 911 and request assistance.
6. SPILL REPORTING

6.1 REPORTING PARAMETERS

Any MRWPCA Field Maintenance Worker that discovers a spill or other release of 42 gallons or more of diesel at the Fort Ord Pump Station shall contact the Field Maintenance Supervisor at the Regional Treatment Plant (by day) or the MRWPCA standby person (by night). The Field Maintenance Supervisor /Standby Person will confirm with the Field Maintenance Worker that the spill does exceed 42 gallons (25270.8 H&S Code, one barrel), and immediately notify the California State Office of Emergency Services, Hazardous Materials Unit. (This reporting is pursuant to Section 13272, Subdivision (a) of the California Water Code.)

If this is the second spill of more than 42 gallons in a calendar year, then the MRWPCA will also contact the National Response Center, pursuant to 40 CFR 112).

6.2 DOCUMENTATION OF SPILL REPORT

All notifications and reports shall be documented using the MRWPCA SPCC Spill Reporting Form (Appendix D). Spill records for the Fort Ord facility are kept at the Safety Office.

The first responder needs to document the sequence of events regarding the spill on the Spill Report form.
7. TRAINING

Training for Maintenance and Operations employees includes both hazard communication and hazardous waste operations and emergency response (HAZWOPER) 40-hour training (29CFR1910.120 and 8CCR5192). This training covers countermeasure and control technologies, spill response equipment, and spill response procedures. Employees receive initial training when hired and refresher (8-hour) training annually.

All Field Maintenance personnel have been made aware of the contents of this SPCC and the Hazardous Materials Business Response Plan, and have been trained in appropriate emergency response procedures.

Briefings on the SPCC for Operations personnel are scheduled at least once per year with the annual refresher HAZWOPER training. Periodic safety training sessions are held for Field Maintenance Workers who might be involved in containment and clean-up operations.

Management and other key personnel responsible for managing the incident command system have received special training on reporting of releases of hazardous materials (including reports on oil spills), and on managing a hazardous materials incident command system.

Documentation of all training is kept with the Safety Officer responsible for coordinating training.
A.1 LARGE AREA MAPS
A.2 SITE PLAN

1. 2000 gallon HAO2 Tank
2. Purifi Scrubber Unit
3. 2,000 sq ft activated carbon scrubbers
4. 4,000 gallon diesel storage tank

Access to Pump Station
Via FT. ORD

Access Road
STATE HIGHWAY 39

SitePlan_A01.pdf

Fort Ord Pump Station SPCC Plan
Appendix A – Maps & Photos
A-3
February 2010
A.4 EQUIPMENT PHOTOS

Photograph A - View of Tank from the East Side
The Fill Valve and “Fill Box” are located on the right of the tank behind the steps.

Photograph B - View of Tank from North Side
This view shows the “Fill Box” in the center of the picture beside the traffic barrier. The photograph also shows the sandy soil behind the tank (to the south).
Photograph C - View of Tank from the South Side
This photograph shows the berm beneath the tank, and the electrical conduit (with wiring for the monitor and alarms) on the side of the tank.

Photograph D - Close up of Fill Box on North Side of Tank
This view shows a close-up of the "Fill Box" in the center of the picture.
APPENDIX B
SPECIFICATIONS FOR THE “SUPERVAULT” DIESEL TANK
MRWPCA Pump Station
Emergency Procedures
(Post near telephones and as appropriate)

In case of a fire, spill, or other emergency involving hazardous chemicals or wastes, do the following:

Major Emergency
- Evacuate the affected areas per the pump station
- Call 911 and report the emergency
- Report the emergency to the facility Emergency Coordinator

Minor Emergency
- Try to control the emergency if you are trained to do so and do it safely
- **Report the emergency to all of the MRWPCA Pump Station Emergency Coordinators**

Facility Emergency Coordinators

<table>
<thead>
<tr>
<th>Name</th>
<th>Work Phone</th>
<th>Cell Phone</th>
<th>Home Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Malanka</td>
<td>831-883-1118</td>
<td>831-901-9552</td>
<td>831-455-2511</td>
</tr>
<tr>
<td>Bret Boatman</td>
<td>831-883-1118</td>
<td>831-238-4431</td>
<td>831-649-1635</td>
</tr>
<tr>
<td>James Coleman</td>
<td>831-883-6168</td>
<td>831-869-8551</td>
<td>831-236-2066</td>
</tr>
</tbody>
</table>

Emergency Agencies

<table>
<thead>
<tr>
<th>Agency</th>
<th>Phone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Dept., Ambulance, Police</td>
<td>911</td>
</tr>
<tr>
<td>Governor’s Office of Emergency Services</td>
<td>(800) 852-7550</td>
</tr>
<tr>
<td>Monterey County Hazardous Materials Compliance Division</td>
<td>(831) 755-4511</td>
</tr>
</tbody>
</table>

This document is only a summary of emergency procedures. Refer to the MRWPCA Pump Station written business response plan for detailed procedures.
Facility Name: MRWPCA Regional Treatment Plant

Company / Operator Name: Monterey Regional Water Pollution Control Agency

Mailing Address: #5 Harris Court, Bldg. D

City: Monterey, CA 93940

Environmental Contact: Garrett Haertel Title Compliance Engineer

Telephone: 831-883-6176 E-mail: garrett@mrwpca.com

<table>
<thead>
<tr>
<th>Emergency Contact</th>
<th>Title</th>
<th>Business</th>
<th>Home</th>
<th>Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brad Hagemann</td>
<td>Assistant General Manger</td>
<td>831-883-1118</td>
<td>N/A</td>
<td>831-238-4426</td>
</tr>
<tr>
<td>John Tiernan</td>
<td>Dir. of Admin Services</td>
<td>831-645-4602</td>
<td>831-915-0983</td>
<td>831-484-9023</td>
</tr>
<tr>
<td>Garrett Haertel</td>
<td>Compliance Engineer</td>
<td>831-883-1118</td>
<td>831-634-1963</td>
<td>408-206-5494</td>
</tr>
<tr>
<td>James Dix</td>
<td>Chief Plant Operator</td>
<td>831-883-1118</td>
<td>831-757-6190</td>
<td>831-238-3121</td>
</tr>
<tr>
<td>Richard Gilliam</td>
<td>Operations Supervisor</td>
<td>831-883-1118</td>
<td>N/A</td>
<td>831-521-9790</td>
</tr>
<tr>
<td>Mark Malanka</td>
<td>Maint. Manager</td>
<td>831-883-1118</td>
<td>831-455-2511</td>
<td>831-901-9552</td>
</tr>
<tr>
<td>James Coleman</td>
<td>Safety Officer</td>
<td>831-883-1118</td>
<td>831-236-2066</td>
<td>831-238-4038</td>
</tr>
</tbody>
</table>
1. a. Emergency Contacts*:
 - Fire/Police/Ambulance .. Phone No. 911
 - State Office of Emergency Services Phone No. (800) 852-7550
 - Chemical Transportation Emergency Center Phone No. (800) 424-9300

b. Post-Incident Contacts*:
 - Monterey County Toxics Branch Phone No. (831) 755-4511
 - California EPA Department of Toxic Substances Control . Phone No. (510) 540-3739
 - Cal-OSHA Division of Occupational Safety and Health ... Phone No. (510) 794-2521
 - Air Quality Management District Phone No. (831) 647-9411
 - Regional Water Quality Control Board Phone No. (805) 549-3147
 - County Agricultural Commissioner Phone No. (831) 759-7325
 - PG&E .. Phone No. (800) 743-5000

* These telephone numbers are provided as a general aid to emergency notification. Be advised that additional agencies may be required to be notified.

Emergency Resources:
 - Poison Control Center Phone No. (800) 876-4766

<table>
<thead>
<tr>
<th>Nearest Hospital:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Community Hospital of the Monterey Peninsula</td>
</tr>
<tr>
<td>Phone No.: (831) 624-5311</td>
</tr>
<tr>
<td>Address: 23625 Holman Hwy.</td>
</tr>
<tr>
<td>City: Monterey, CA 93940</td>
</tr>
<tr>
<td>Health Care Provider:</td>
</tr>
<tr>
<td>Name: Workwell Clinic</td>
</tr>
<tr>
<td>Phone: (831) 422-3701</td>
</tr>
<tr>
<td>Address: 680 East Romie Lane Ste. B</td>
</tr>
<tr>
<td>Salinas, CA 93901</td>
</tr>
</tbody>
</table>
Part A
Incident Summary

Incident Date:

Incident Time:

Incident Number:

Incident Type:
- FIRE
- EXPLOSION
- SPILL
- VAPOR RELEASE
- NEAR MISS

Incident Category:
- NO INVESTIGATION
- MINOR INCIDENT
- MAJOR ACCIDENT

Brief Description of Incident:

Agency Employee(s) Involved?
- No
- Yes - Company name

Contract Employee(s) Involved?
- No
- Yes - Company name

Prepared By:

Title:

Date:

Part B
Incident Analysis

Date Investigation Began:

Investigation Team Members/Team Leader:

Supporting Documents:

Witnesses:

Investigation Technique:

Initiating Event:

Chronology of Events:

Actions and/or Equipment That Reduced Seriousness of the Incident:

Root Cause:

Contributing Causes:

Summary of Recommendations:

Part C
Incident Report Completion

Separate Incident Report Prepared:
- No
- Yes

Report Approved

Recommendations Completed

Signature

Name

Title

Date